Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Recent observations have found a growing number of hypervelocity stars with speeds of ≈1500 − 2500 km s−1that could have only been produced through thermonuclear supernovae in white dwarf binaries. Most of the observed hypervelocity runaways in this class display a surprising inflated structure: their current radii are roughly an order of magnitude greater than they would have been as white dwarfs filling their Roche lobe. While many simulations exist studying the dynamical phase leading to supernova detonation in these systems, no detailed calculations of the long-term structure of the runaways have yet been performed. We used an existing AREPOhydrodynamical simulation of a supernova in a white dwarf binary as a starting point for the evolution of these stars with the one-dimensional stellar evolution code MESA. We show that the supernova shock is not energetic enough to inflate the white dwarf over timescales longer than a few thousand years, significantly shorter than the 105 − 6year lifetimes inferred for observed hypervelocity runaways. Although they experience a shock from a supernova less than ≈0.02 R⊙away, our models do not experience significant interior heating, and all contract back to radii of around 0.01 R⊙within about 104years. Explaining the observed inflated states requires either an additional source of significant heating or some other physics that is not yet accounted for in the subsequent evolution.more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            Abstract We measure the mass distribution of main-sequence (MS) companions to hot subdwarf B stars (sdBs) in post-common envelope binaries (PCEBs). We carried out a spectroscopic survey of 14 eclipsing systems (“HW Vir binaries”) with orbital periods of 3.8 < Porb < 12 hr, resulting in a well-understood selection function and a near-complete sample of HW Vir binaries withG < 16. We constrain companion masses from the radial velocity curves of the sdB stars. The companion mass distribution peaks atMMS ≈ 0.15M⊙and drops off atMMS > 0.2M⊙, with only two systems hosting companions above the fully convective limit. There is no correlation betweenPorbandMMSwithin the sample. A similar drop-off in the companion mass distribution of white dwarf (WD) + MS PCEBs has been attributed to disrupted magnetic braking (MB) below the fully convective limit. We compare the sdB companion mass distribution to predictions of binary evolution simulations with a range of MB laws. Because sdBs have short lifetimes compared to WDs, explaining the lack of higher-mass MS companions to sdBs with disrupted MB requires MB to be boosted by a factor of 20–100 relative to MB laws inferred from the rotation evolution of single stars. We speculate that such boosting may be a result of irradiation-driven enhancement of the MS stars’ winds. An alternative possibility is that common envelope evolution favors low-mass companions in short-period orbits, but the existence of massive WD companions to sdBs with similar periods disfavors this scenario.more » « less
- 
            Abstract We present Cryoscope, a new 50 deg2field-of-view, 1.2 m aperture,Kdarksurvey telescope to be located at Dome C, Antarctica. Cryoscope has an innovative optical–thermal design wherein the entire telescope is cryogenically cooled. Cryoscope also explores new detector technology to cost-effectively tile the full focal plane. Leveraging the dark Antarctic sky and minimizing telescope thermal emission, Cryoscope achieves unprecedented deep, wide, fast, and red observations, matching and exceeding volumetric survey speeds from the Ultraviolet Explorer, Vera Rubin Observatory, Nancy Grace Roman Space Telescope, SPHEREx, and NEO Surveyor. By providing coverage beyond wavelengths of 2μm, we aim to create the most comprehensive dynamic movie of the most obscured reaches of the Universe. Cryoscope will be a dedicated discovery engine for electromagnetic emission from coalescing compact binaries, Earth-like exoplanets orbiting cold stars, and multiple facets of time-domain, stellar, and solar system science. In this paper, we describe the scientific drivers and technical innovations for this new discovery engine operating in theKdarkpassband, why we choose to deploy it in Antarctica, and the status of a fifth-scale prototype designed as a Pathfinder to retire technological risks prior to full-scale implementation. We plan to deploy the Cryoscope Pathfinder to Dome C in 2026 December and the full-scale telescope by 2030.more » « lessFree, publicly-accessible full text available June 1, 2026
- 
            ABSTRACT Cataclysmic variables (CVs) that have evolved past the period minimum during their lifetimes are predicted to be systems with a brown dwarf donor. While population synthesis models predict that around 40–70 per cent of the Galactic CVs are post-period minimum systems referred to as ‘period bouncers’, only a few dozen confirmed systems are known. We report the study and characterization of a new eclipsing CV, SRGeJ041130.3+685350 (SRGeJ0411), discovered from a joint SRG/eROSITA and ZTF programme. The optical spectrum of SRGeJ0411 shows prominent hydrogen and helium emission lines, typical for CVs. We obtained optical high-speed photometry to confirm the eclipse of SRGeJ0411 and determine the orbital period to be Porb ≈ 97.530 min. The spectral energy distribution suggests that the donor has an effective temperature of ≲ 1800 K. We constrain the donor mass with the period–density relationship for Roche lobe-filling stars and find that Mdonor ≲ 0.04 M⊙. The binary parameters are consistent with evolutionary models for post-period minimum CVs, suggesting that SRGeJ0411 is a new period bouncer. The optical emission lines of SRGeJ0411 are single-peaked despite the system being eclipsing, which is typically only seen due to stream-fed accretion in polars. X-ray spectroscopy hints that the white dwarf in SRGeJ0411 could be magnetic, but verifying the magnetic nature of SRGeJ0411 requires further investigation. The lack of optical outbursts has made SRGeJ0411 elusive in previous surveys, and joint X-ray and optical surveys highlight the potential for discovering similar systems in the near future.more » « less
- 
            Abstract Magnetic cataclysmic variables (CVs) are luminous Galactic X-ray sources, which have been difficult to find in purely optical surveys due to their lack of outburst behavior. The eROSITA telescope on board the Spektr-RG mission is conducting an all-sky X-ray survey and recently released the public eROSITA Final Equatorial Depth Survey (eFEDS) catalog. We crossmatched the eFEDS catalog with photometry from the Zwicky Transient Facility and discovered two new magnetic CVs. We obtained high-cadence optical photometry and phase-resolved spectroscopy for each magnetic CV candidate and found them both to be polars. Among the newly discovered magnetic CVs is eFEDS J085037.2+044359/ZTFJ0850+0443, an eclipsing polar with orbital period P orb = 1.72 hr and WD mass M WD = 0.81 ± 0.08 M ⊙ . We suggest that eFEDS J085037.2+044359/ZTFJ0850+0443 is a low magnetic field strength polar, with B WD ≲ 10 MG. We also discovered a non-eclipsing polar, eFEDS J092614.1+010558/ZTFJ0926+0105, with orbital period P orb = 1.47 hr and magnetic field strength B WD = 36–42 MG.more » « less
- 
            AM CVn systems are a rare type of accreting binary that consists of a white dwarf and a helium-rich, degenerate donor star. Using the Zwicky Transient Facility (ZTF), we searched for new AM CVn systems by focusing on blue, outbursting stars. We first selected outbursting stars using the ZTF alerts. We cross-matched the candidates with Gaia and Pan-STARRS catalogs. The initial selection of candidates based on the Gaia BP-RP contains 1751 unknown objects. We used the Pan-STARRS g-r and r-i color in combination with the Gaia color to identify 59 high-priority candidates. We obtained identification spectra of 35 sources, of which 18 are high priority candidates, and discovered 9 new AM CVn systems and one magnetic CV which shows only He-II lines. Using the outburst recurrence time, we estimate the orbital periods which are in the range of 29 to 50 minutes. We conclude that targeted followup of blue, outbursting sources is an efficient method to find new AM CVn systems, and we plan to followup all candidates we identified to systematically study the population of outbursting AM CVn systems.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available